FRONTIERS OF ARTIFICIAL INTELLIGENCE (AI) IN IMAGING

Daniel L. Rubin, MD, MS

Associate Professor of Radiology and of Medicine (Biomedical Informatics), and by courtesy, of Ophthalmology
Department of Radiology
Stanford University

Key points
• Medical imaging is key to many important clinical use cases
• Clinicians who interpret images need assistance to reduce variations in care
• AI methods are promising for decision support and for reducing variations in care
• Deep learning methods are promising, but there are challenges, and best machine learning approach depends on the clinical problem

Outline
• Medical imaging and key clinical use cases motivating AI in imaging
• AI approaches and challenges
• Recent work and potential of AI in imaging

Imaging is key in several medical specialties
• Radiology
• Pathology
• Ophthalmology
• Dermatology
• Micro&Neurobiology

Acknowledgements
Postdoctoral Scholars
• Assaf Hoogi
• Alfiia Galimzianova
•imon Banerjee
Alumni trainees
• John Lambert
• Zeshan Hussain
• Jocelyn Barker

Graduate Students
• Darvin Yi
• Carson Lam
• Xuerong Xiao
• Rebecca Sawyer

Faculty Collaborators
• Christopher Re
• Sandy Napel
• Curt Langlotz
• Chris Beaulieu

Funding Support
National QIN grants U01CA142555, 1U01CA190214, 1U01CA187947
ECOG-ACRIN
NVIDIA Academic Hardware Grant Program

Copyright © Daniel Rubin 2017
Many imaging modalities within each specialty

Key clinical uses of medical imaging (and AI)

- Disease detection
- Lesion segmentation
- Diagnosis
- Treatment selection
- Response assessment
- Clinical prediction (of response or future disease)

1) Flood of image data...

Why do we need AI?

- Flood of image data
 - Impacts disease detection
- Variation in clinical practice
 - Impacts diagnosis
- Variation in disease among people
 - Impacts treatment selection

2) Variation in practice

- There are large variations and disparities in care (Institute of Medicine, 2001)
- “Errors and variations in interpretation now represent the weakest aspect of clinical imaging*”

Variable Performance of Radiologists

3) Variation in disease among people

People (and their diseases) differ...

Disease in different people varies

- Molecular diversity
 - Heterogeneous genomic aberration landscape of individual tumors
- Phenotypic diversity
 - Variable appearance of lesions on images
- Clinical diversity
 - Patients have different response to treatment
- Ideally we will “profile” disease for personalized medicine

Data-driven, precision medicine

- Mine biological and medical data to create classifiers of disease and treatment response
- “Profile” disease in patients for personalized / precision medicine

AI approaches

- Specify and process **pre-defined image features** in large volume to create clinical models
 - “radiomics”
- Process **raw image data** (unsupervised features learning) to directly create clinical models (usually classification)
 - Image patches
 - Deep learning, CNNs, etc.

Outline

- Medical imaging and key clinical use cases motivating AI in imaging
- AI approaches and challenges
- Recent work and potential of AI in imaging
Large-scale quantitative image features analysis: "Radiomics"

"High-throughput extraction of quantitative image features with the intent of creating mineable databases from radiological images"

Quantitative Image Features

Shape:

Edge:

Texture features:
(characterize lesion interior)

Quantifying texture: GLCM

• Gray-Level Co-Occurrence Matrix (GLCM)
• Captures heterogeneity in tissues

Structured image data ("image phenotype") represented as feature vector

Feature vector = quantitative features

Describing texture as composition of of elements from Riesz filterbank

$N = 8$

\sum associated texture model
Texture model learning

2-D tissue from interstitial lung diseases in CT

AI approaches

• Specify and process pre-defined image features in large volume to create clinical models
 — “radiomics”

• Process raw image data (unsupervised features learning) to directly create clinical models (usually classification)
 — Image patches
 — Deep learning, CNNs, etc.

Image patch analysis

Image patch analysis: Feature vectors of visual words

Image patch analysis: classifying liver lesions

1. Patch Feature Extraction

• Uniform-sized patches extracted (including entire lesion and its margins)
• Sliding grid
• Normalize patches
 – Subtract mean
 – Divide by SD
• Final result = set of patch feature vectors
2. Dictionary Generation

- Represents all the unique “visual words” derived from all raw patches in all images
- Collect all raw patches
- Dimensionality reduction: PCA on patches to select components (“codewords”) with highest variance
- Cluster patches using K-means
- **Visual Word** = The centroids of each clusters
- **Dictionary** = all visual words

Feature Vector Generation

- Each image is a feature vector based on histogram of visual words
 - Dimensions = visual words in dictionary
 - Value of each dimension = count of patches closest to that visual word
- Normalize by dividing by number of patches
- Get separate feature vectors using interior and boundary dictionaries

Deep learning

- High-level abstractions of image features hierarchical, non-linear transformations
- Inspired by hierarchical visual processing by the brain
- Higher-level features (layers) are defined from lower-level ones, and represent higher levels of abstraction

Deep learning learns **feature hierarchies**

Why not do everything with deep learning?

- Need **lots of data** to train models
- Need **powerful hardware**
- Large amounts of **tagged training data** is in short supply and expensive to produce
- Many **parameters** need to be tuned, requires expertise and labor intensive
- Main applications limited to only **classification** and **segmentation**

Outline

- Medical imaging and key clinical use cases motivating AI in imaging
- AI approaches and challenges
- Recent work and potential of AI in imaging
Key clinical uses of medical imaging (and AI)

1. Disease detection
2. Lesion segmentation
3. Diagnosis
4. Treatment selection
5. Clinical prediction (of response or future disease)

1) Detection of image abnormalities

AKA “where’s Waldo?”

Detection of breast masses with deep learning

- Digital Database for Screening Mammography (DDSM)
- 2420 mass ROIs
- 80%/10%/10% training/test evaluation sets
- 256x256 patches, labeled as “mass” or “non-mass”
- Data augmentation: cropping, translation, rotation, flipping and scaling of image tiles
- Probability classification map of location (fully connected CNN)

Performance:

<table>
<thead>
<tr>
<th>Method</th>
<th>No. of Images</th>
<th>No. of Parameters</th>
<th>Validation Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN-L (Deep)</td>
<td>1473</td>
<td>10,000</td>
<td>88%</td>
</tr>
<tr>
<td>CNN-II (Fully)</td>
<td>225</td>
<td>1,000</td>
<td>87%</td>
</tr>
</tbody>
</table>

Examples

Detecting retinal hemorrhages
Sliding window detection of small features compared to physician manual detection

![Image of sliding window detection](image1)

Single 224x224x3 input CNN sliding window:
Detecting any abnormal feature
Red = P ~ 0.99 Green = P ~ 0.5 Blue = ~ 0.01

2) Segmentation of image regions

- Division of image into non-overlapping, homogeneous regions
- Segmented regions often input to other processing (e.g., feature extraction, image classification)

![Image of segmentation](image2)

Segmentation of brain tumors using deep learning

- **BRAIn Tumor Segmentation (BRATS)**
 - Glioblastoma Segmentation
 - 257 Patients
 - 4 Modalities of Co-registered MR Data
 - Expert Segmentations
- Algorithm: 3-Dimensional 4-Channel Fully Convolutional Neural Network (AlexNet)
- Dice Score Accuracy: 0.89
- Inter-radiologist Dice Score: 0.89

![Image of brain tumor segmentation](image3)

3) Diagnosis: Classification of images

AKA “is it Waldo?”

- Benign Lymph Node
- Infiltrating Cancer

Diagnosis of liver lesions with image patches

![Image of liver lesion diagnosis](image4)

Pathology classification using quantitative image feature analysis

Goal: Automated classification of high- and low-grade glioma

<table>
<thead>
<tr>
<th>Actual</th>
<th>LGGGBM</th>
<th>GBM LGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBM</td>
<td>LGGGBM</td>
<td>GBM LGG</td>
</tr>
</tbody>
</table>

![Image of pathology classification](image5)

<table>
<thead>
<tr>
<th>Type of Dictionary</th>
<th>Only Boundary Dict</th>
<th>Only Interior Dict</th>
<th>Both Boundary and Interior Dict</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Errors: 16</td>
<td>17</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- **Confusion Matrix**

<table>
<thead>
<tr>
<th>Type of Dictionary</th>
<th>Only Boundary Dict</th>
<th>Only Interior Dict</th>
<th>Both Boundary and Interior Dict</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GBM LGG</td>
<td>GBM LGG</td>
<td>GBM LGG</td>
</tr>
<tr>
<td>GBM LGG</td>
<td>23</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>GBM LGG</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>GBM LGG</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Barker, J., Hoogi, A., Depeursinge, A., Rubin, D. Medical Image Analysis 30(80-71, 2016)
Deep learning: Diagnosis of masses on mammography

- Classify breast masses as benign vs. malignant
- Branching structure of CNN to account for two views of breast
- Predictive accuracy ~ 0.8

Confocal Endomicroscopy

- Enables clinicians to obtain real time microscopic images
- “Optical biopsy”
 - based on confocal microscopy
- High resolution, dynamic, sub-surface imaging
- Used in GI and pulmonary applications
 - Barrett’s esophagus, colonic dysplasia

Bladder pathology

| Normal | Low Grade | High Grade | CIS | Inflammation |

Normal Bladder Tissue

Bladder Cancer

4) Treatment selection

Goal: Identify which GBM patients will respond to anti-angiogenic drugs

Magnetic resonance perfusion image features uncover a subgroup of GBM patients with poor survival and better response to drug treatment.
5) Clinical prediction

• Will disease respond to the treatment?
• Will the disease progress?
• Will disease recur?

Prediction: Predicting survival from quantitative analysis of histopathology images

Summary: Key points

• Medical imaging is key to many important clinical use cases
• Clinicians who interpret images need assistance to reduce variations in care
• AI methods are promising for decision support and for reducing variations in care
• Deep learning methods are promising, but there are challenges, and best machine learning approach depends on the clinical problem

Thank you.

Contact info:
dlrubin@stanford.edu